A Hermitian Analogue of the Bröcker–prestel Theorem

نویسنده

  • VINCENT ASTIER
چکیده

The Bröcker–Prestel local-global principle characterizesweak isotropy of quadratic forms over a formally real field in terms of weak isotropy over the henselizations and isotropy over the real closures of that field. A hermitian analogue of this principle is presented for algebras of index at most two. An improved result is also presented for algebras with a decomposable involution, algebras of pythagorean index atmost two, and algebras over SAP and ED fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuity of Volumes on Arithmetic Varieties

We introduce the volume function for C-hermitian invertible sheaves on an arithmetic variety as an analogue of the geometric volume function. The main result of this paper is the continuity of the arithmetic volume function. As a consequence, we have the arithmetic Hilbert-Samuel formula for a nef C-hermitian invertible sheaf. We also give another applications, for example, a generalized Hodge ...

متن کامل

Einstein - Weyl structures on complex manifolds and conformal version of Monge - Ampère equation

A Hermitian Einstein-Weyl manifold is a complex manifold admitting a Ricci-flat Kähler covering M̃ , with the deck transform acting on M̃ by homotheties. If compact, it admits a canonical Vaisman metric, due to Gauduchon. We show that a Hermitian Einstein-Weyl structure on a compact complex manifold is determined by its volume form. This result is a conformal analogue of Calabi’s theorem stating ...

متن کامل

A quantitative sharpening of Moriwaki’s arithmetic Bogomolov inequality

A. Moriwaki proved the following arithmetic analogue of the Bogomolov unstability theorem. If a torsion-free hermitian coherent sheaf on an arithmetic surface has negative discriminant then it admits an arithmetically destabilising subsheaf. In the geometric situation it is known that such a subsheaf can be found subject to an additional numerical constraint and here we prove the arithmetic ana...

متن کامل

Bogomolov Unstability on Arithmetic Surfaces

In this paper, we will consider an arithmetic analogue of Bogomolov unstability theorem, i.e. if (E, h) is a torsion free Hermitian sheaf on an arithmetic surface X and d̂eg ( (rkE − 1)ĉ1(E, h) − (2 rkE)ĉ2(E, h) ) > 0, then there is a non-zero saturated subsheaf F of E such that ĉ1(F, h|F )/rkF − ĉ1(E, h)/rkE lies in the positive cone of X. 0. Introduction In [Bo], Bogomolov proved unstability t...

متن کامل

Complex Line Bundles over Simplicial Complexes and their Applications

Discrete vector bundles are important in Physics and recently found remarkable applications in Computer Graphics. This article approaches discrete bundles from the viewpoint of Discrete Differential Geometry, including a complete classification of discrete vector bundles over finite simplicial complexes. In particular, we obtain a discrete analogue of a theorem of André Weil on the classificati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007